Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Mol Imaging Biol ; 23(5): 745-755, 2021 10.
Article En | MEDLINE | ID: mdl-33891265

PURPOSE: PSMA overexpression has been associated with aggressive prostate cancer (PCa). However, PSMA PET imaging has revealed highly variable changes in PSMA expression in response to ADT treatment ranging from increases to moderate decreases. To better understand these PSMA responses and potential relationship to progressive PCa, the PET imaging agent, [18F]DCFPyL, was used to assess changes in PSMA expression in response to ADT using genomically characterized LuCaP patient-derived xenograft mouse models (LuCaP-PDXs) which were found to be sensitive to ADT (LuCaP73 and LuCaP136;CS) or resistant (LuCaP167;CR). METHODS: [18F]DCFPyL (2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid) was used to assess PSMA in vitro (saturation assays) in LuCaP tumor membrane homogenates and in vivo (imaging/biodistribution) in LuCaP-PDXs. Control and ADT-treated LuCaPs were imaged before ADT (0 days) and 2-, 7-, 14-, and 21-days post-ADT from which tumor:muscle ratios (T:Ms) were determined and concurrently tumor volumes were measured (caliper). After the 21-day imaging, biodistributions and histologic/genomic (PSMA, AR) analysis were done. RESULTS: [18F]DCFPyL exhibited high affinity for PSMA and distinguished different levels of PSMA in LuCaP tumors. Post-ADT CS LuCaP73 and LuCaP136 tumor volumes significantly decreased at day 7 or 14 respectively vs controls, whereas the CR LuCaP167 tumor volumes were minimally changed. [18F]DCFPyL imaging T:Ms were increased 3-5-fold in treated LuCaP73 tumors vs controls, while treated LuCaP136 T:Ms remained unchanged which was confirmed by day 21 biodistribution results. For treated LuCaP167, T:Ms were decreased (~ 45 %) vs controls but due to low T:M values (<2) may not be indicative of PSMA level changes. LuCaP73 tumor PSMA histologic/genomic results were comparable to imaging/biodistribution results, whereas the results for other tumor types varied. CONCLUSION: Tumor responses to ADT varied from sensitive to resistant among these LuCaP PDXs, while only the high PSMA expressing LuCaP model exhibited an increase in PSMA levels in response to ADT. These models may be useful in understanding the clinical relevance of PSMA PET responses to ADT and potentially the relationship to disease progression as it may relate to the genomic signature.


Androgen Antagonists/therapeutic use , Lysine/analogs & derivatives , Positron-Emission Tomography/methods , Prostate-Specific Antigen , Prostatic Neoplasms , Urea/analogs & derivatives , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Humans , Lysine/administration & dosage , Lysine/metabolism , Lysine/pharmacokinetics , Male , Mice , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/chemistry , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Urea/administration & dosage , Urea/metabolism , Urea/pharmacokinetics , Xenograft Model Antitumor Assays
2.
Cell Syst ; 7(3): 323-338.e6, 2018 09 26.
Article En | MEDLINE | ID: mdl-30077634

Intracellular bacterial pathogens secrete a repertoire of effector proteins into host cells that are required to hijack cellular pathways and cause disease. Despite decades of research, the molecular functions of most bacterial effectors remain unclear. To address this gap, we generated quantitative genetic interaction profiles between 36 validated and putative effectors from three evolutionarily divergent human bacterial pathogens and 4,190 yeast deletion strains. Correlating effector-generated profiles with those of yeast mutants, we recapitulated known biology for several effectors with remarkable specificity and predicted previously unknown functions for others. Biochemical and functional validation in human cells revealed a role for an uncharacterized component of the Salmonella SPI-2 translocon, SseC, in regulating maintenance of the Salmonella vacuole through interactions with components of the host retromer complex. These results exhibit the power of genetic interaction profiling to discover and dissect complex biology at the host-pathogen interface.


Bacterial Proteins/metabolism , Multiprotein Complexes/metabolism , Salmonella Infections/genetics , Salmonella typhi/physiology , Yeasts/genetics , Animals , Bacterial Proteins/genetics , Gene Regulatory Networks , HeLa Cells , High-Throughput Screening Assays , Host-Pathogen Interactions , Humans , Mice , Microorganisms, Genetically-Modified , Mutation/genetics , Signal Transduction
...